Environmental Product Declaration Guardian Glass Float Glass Clear, Float Glass Light Green, and Solar Management Glass Asia-Pacific Automotive Glass Products Guardian Glass is committed to the efficient use of natural resources while operating in a way that protects the safety, health, and well-being of its employees, customers, the environment, and society. As a manufacturing leader of high performance, energy-efficient glass products for commercial, residential, interior, transportation, solar, and specialty applications, Guardian Glass makes products that help improve people's lives. By allowing abundant natural light into homes, offices, and vehicles, glass products can help contribute to occupants' well-being and low-emissivity glass helps reduce energy consumption for heating and cooling. By publishing this EPD, Guardian Glass intends to support architects and designers who strive to enhance the environmental profiles of the buildings they design through the products they specify. The goal is to provide them with the information needed to achieve credits in global building rating systems. Guardian Glass is dedicated to continually improving the science and process of its core competency, flat glass manufacturing. Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass According to ISO 14025 and EN15804 Asia-Pacific Flat Glass Products This declaration is an environmental product declaration (EPD) in accordance with ISO 14025 and EN15804 EPDs rely on a Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these other impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, thus the level of accuracy for any estimated effect may differ between product lines and reported impacts. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable (ISO 14025). | EPD PROGRAM AND PROGRAM OPERATOR | UL Solutions | | | | | |---|---|---|--|--|--| | NAME, ADDRESS, LOGO, AND WEBSITE | OL COIGIONS | t Pkwy, Marietta, GA 30067 USA | | | | | GENERAL PROGRAM INSTRUCTIONS AND VERSION NUMBER | | eneral Program Instructions v2.7. 2022. | | | | | MANUFACTURER NAME AND
HEADQUARTERS ADDRESS | | Rd, Khlong Tan,
ngkok 10110, Thailand | | | | | DECLARATION NUMBER | 4791714121.104 | • • | | | | | DECLARED PRODUCT & FUNCTIONAL UNIT
OF DECLARED UNIT | Guardian Glass:
Management Gla
Asia-Pacific Flat
Declared Unit = | Guardian Glass Environmental Product Declaration Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass Asia-Pacific Flat Glass Products, Asia-Pacific Products Declared Unit = 1 kilogram of finished glass product and its packaging to be used in a specified market, automotive | | | | | REFERENCE PCR AND VERSION NUMBER | Glass Products U
37113, 37115, 37 | Used In Automotive and Transport Industry: UN CPC | | | | | DESCRIPTION OF PRODUCT(S) APPLICATION/USE | | motive Glass Products | | | | | PRODUCT RSL DESCRIPTION | 30 Years | | | | | | MARKETS OF APPLICABILITY | | Pacific region, covering facilities in Thailand | | | | | DATE OF ISSUE | March 14, 2025 | March 14, 2025 | | | | | PERIOD OF VALIDITY | 5 years | | | | | | EPD TYPE | Product Specific | | | | | | DATASET VARIABILITY | N/A | | | | | | EPD SCOPE | Cradle-to-Gate wi | • | | | | | YEAR(S) OF REPORTED PRIMARY DATA | Calendar Year 2 | 022 | | | | | LCA SOFTWARE & VERSION NUMBER | | (formerly GaBi) 10.8 | | | | | LCI DATABASE(S) & VERSION NUMBER | | d LCA Content (formerly GaBi) databases & USLCI v2.0 | | | | | LCIA METHODOLOGY & VERSION NUMBER | | 804+A2 | | | | | The sub-category PCR review was conducted b | • | | | | | | This declaration was independently verified in a ISO 14025: 2006. The UL Environment: Product for Building-Related Products and Services in Na: Life Cycle Assessment Calculation Rules and Requirements, v.3.2, December 2018, based or as the core PCR. | t Category Rules
Iorth America, Part
d Report | Laght alon | | | | | | EXTERNAL | Cooper McCollum, UL Solutions | | | | | This life cycle assessment was independently was accordance with ISO 14044 and the reference l | Thomas P. Gloria, Industrial Ecology Consultants | | | | | Comparison of the environmental performance using EPD information shall consider all relevant information modules over the full life cycle of the products within the building. This PCR allows EPD comparability only when the same functional requirements between products are ensured and the requirements of EN15804 are met. It should be noted that different LCA software and background LCI datasets may lead to differences in results for upstream or downstream of the life cycle stages declared. Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass According to ISO 14025 and EN15804 Asia-Pacific Flat Glass Products # **Summary of Declaration and Global Warming Potential Results** This Environmental Product Declaration covers Asia-Pacific uncoated automotive glass products. The following product families and manufacturing facilities are included within this declaration. # **Product Families/Categories Covered:** - Guardian® Float Glass Clear Nongkhae - Guardian® Float Glass Light Green Rayong - Guardian® Solar Management Glass Rayong # **Manufacturing Facilities Covered:** - Nongkhae, Thailand - Rayong, Thailand Environment 3 of 15 Asia-Pacific Flat Glass Products Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass According to ISO 14025 and EN15804 # **Global Warming Potential (Embodied Carbon) Impact Assessment Results:** The following table details the Global Warming Potential (GWP) results as found in Table 4 but scaled to each thickness available. The calculation by given thickness is from scaling factors found in Table 8 which are based on the weight per square meter of glass at each thickness and the total amount of area that would comprise a kilogram of glass. CML v4.2 2016 Baseline Global Warming Potential impact assessment values (IPCC AR5) are provided. Table 1 - Global Warming Potential per m² of Average Automotive Glass | Thickness | Cradle to Gate with Options (A1-A4,C1-C4) GWP (kg CO ₂ eq/m ²) | |-----------|---| | 1.6 mm | 3.08E+01 | | 1.8 mm | 2.73E+01 | | 2.1 mm | 2.34E+01 | | 2.5 mm | 1.97E+01 | | 3.2 mm | 1.54E+01 | | 3.5 mm | 1.41E+01 | | 4.0 mm | 1.23E+01 | # **General Information** #### **Description of Company / Organization** Guardian Glass is one of the largest flat glass producers and innovators in the world. We've been working with glass since 1932 and manufacturing float glass since 1970, and yet the limitless potential of this amazing material still fascinates and inspires us every day. We are committed to advancing glass technology and exploring every application possible. Not only to enhance our consumers' well-being with light and space, but to help conserve energy, regulate temperatures, protect privacy, preserve history and help us See What's PossibleTM. Through pioneering research, the dedication of our people and a firm belief in close collaboration with our partners and customers, we find new ways to build, design and inspire with glass. We continue to build our expertise on each and every project, whether that's an iconic, energy-efficient building or a new glass coating that will solve the challenges of today and beyond. Every day, we work to create more value, using fewer resources than the day before. We constantly challenge ourselves to identify opportunities to build upon the benefits of glass. We expertly combine glass types to maximize energy savings and bring light and an unrivalled aesthetic to people's lives. We're committed to the efficient use of natural resources while operating in a way that protects the safety, health and well-being of our employees, customers, the environment and society. For more information visit our website at www.guardianglass.com #### **Product Description** This EPD is valid for the following processed Guardian Glass products: - Guardian® Clear Glass - Guardian[®] Solar Management Glass - Guardian[®] Light Green Glass Environment 4 of 15 Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass According to ISO 14025 and EN15804 # Manufacturer-Specific EPD Asia-Pacific Flat Glass Products This product-specific EPD was developed based on the Guardian Glass APAC Cradle-to-Gate with Options Automotive Glass Life Cycle Assessment. The EPD accounts for raw material extraction and processing, transport, product manufacturing and end-of-life stages. Manufacturing data were gathered directly from company personnel. When company-specific data were not available, the ratio of production units, within the calendar year 2022, was used as a proxy. For any product group EPDs, an impact assessment was completed for each product and the highest impacts were reported as conservative representations of the product group. Product grouping was considered appropriate if the individual product impacts differed by no more than ±10% in any impact category. # **Application** Clear Glass, Solar Management Glass and Light Green Glass products are used in a wide variety of applications, including automotive applications like windshields. Guardian Glass typically supplies float glass and coated glass products to either its fabricator customers or its own fabrication facilities who further process that glass into the final product by cutting, heat-treating, laminating, insulating, or otherwise fabricating the glass into the desired size and makeup for use in the intended application. Environment 5 of 15 Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass According to ISO 14025 and EN15804 # **Material Composition** Asia-Pacific Flat Glass Products Clear Glass, Solar Management Glass and Light Green Glass is typically manufactured from virgin, non-renewable raw materials such as silica sand, soda ash, dolomite, limestone, and cullet (internal cullet is comprised of the aforementioned raw materials). It can also contain recycled cullet. The crystalline raw materials chemically and structurally transform into amorphous glass through a fusion (melting) process, thereby producing a product which is >99.9% glass oxide. Guardian tinted glass are similar in composition to clear float glass but may include slight variations of trace elements to achieve required optical properties. #### **Technical Data** Technical data on Guardian Glass products is available on at www.guardianglass.com. # **Placing on the Market / Application Rules** The standard that can be applied for Guardian Flat Glass Products: - ASTM C 1036: Standard Specification for Flat Glass - ABNT NBR NM 294:2004 Float Glass # **Properties of Declared Product as Shipped** Product Sizes: While products are primarily cut to customers' specified dimensions, common dimensions of flat glass include: • 48 in x 72 in 96 in x 84 in • 96 in x 144 in While thickness of glass also varies based on customer needs, some standard thicknesses for flat glass include: • 1.6 mm • 1.8 mm • 2.1 mm • 2.5 mm • 3.2 mm • 3.5 mm • 4mm Other sizes are also available, please contact a local sales representative for available sizes in your area. Declaration Type: Business-to-Business Geographic Scope: This declaration is valid for products produced in Thailand from Guardian Glass. Additional Notes: Further processing of the flat glass, such as coating, tempering, laminating, etc., are beyond the scope of the PCR and as such, not included in this analysis. Please see a separate EPD from Guardian Glass for processed glass products. Additionally, this analysis represents the performance of a production-weighted average of Guardian Glass products, based on 2022 production volumes. (UL) Environment 6 of 15 Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass Asia-Pacific Flat Glass Products **According to ISO 14025 and** EN15804 # **Methodological Framework** #### **Declared Unit** The declaration refers to the declared unit of 1 kilogram of unprocessed solar management glass as specified in the Table 2 - Declared Unit Description | Name | Value | Unit | |---|-------|-----------------| | Declared Unit | 1.0 | kg | | Thickness | 4.0 | mm | | Reference Service Life | 30 | years | | Thickness | 4 | mm ² | | Conversion Factor (1 kg to 1 m ²) | 10 | - | #### **System Boundary** This life cycle assessment study is a cradle-to-gate with options environmental product declaration. The following life cycle phases were considered: Table 3 - Description of the System Boundary | Product | | Construction
Installation | | | Use | | | | End- | of-Life | * | | nefits of
ond the s
bounda | system | | | | | |--|-----------|------------------------------|-----------|-------------------------------|-----|-------------|--------|-------------|---------------|---------------------------|--------------------------|--------------------------------|----------------------------------|------------------|----------|-------|----------|-----------| | Raw Material
Extraction and
Processing | Transport | Manufacturing | Transport | Construction/
Installation | nse | Maintenance | Repair | Replacement | Refurbishment | Operational
Energy Use | Operational Water
Use | De-Construction/
Demolition | Transport | Waste Processing | Disposal | Reuse | Recovery | Recycling | | A1 | A2 | A3 | A4 | A5 | B1 | B2 | В3 | B4 | B5 | B6 | B7 | C1 | C2 | C3 | C4 | D | D | D | | Х | Х | Χ | Х | MND Х | Χ | Х | Х | MND | MND | MND | Description of the System Boundary Stages Corresponding to the PCR # **Allocation** Where manufacturing inputs, such as electricity use, were not sub-metered, allocation was determined on a per kilogram basis for primary data. For secondary data, cut-off methodology was used. ⁽X = Included; MND = Module Not Declared) *This includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues. Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass Asia-Pacific Flat Glass Products According to ISO 14025 and EN15804 # Cut-off Criteria Processes whose total contribution to the final result, with respect to their mass and in relation to all considered impact categories, is less than 1% can be neglected. The sum of the neglected processes may not exceed 5% by mass of the considered impact categories. For that a documented assumption is admissible. For Hazardous Substances the following requirements apply: - The Life Cycle Inventory (LCI) of hazardous substances will be included, if the inventory is available. - If the LCI for a hazardous substance is not available, the substance will appear as an input in the LCI of the product, if its mass represents more than 0.1% of the product composition. - If the LCI of a hazardous substance is approximated by modeling another substance, documentation will be provided. This EPD is in compliance with the cut-off criteria. No processes were neglected or excluded. Capital items for the production processes (machine, buildings, etc.) were not taken into consideration. #### **Data Sources** Primary data were collected for every process in the product system under the control of Guardian Glass. Secondary data from the LCA for Experts Sphera database were utilized. These data were evaluated and have temporal, geographic, and technical coverage appropriate to the scope of the Glass product category. #### **Data Quality** The data sources used are complete and representative of Asia Pacific in terms of the geographic and technological coverage and are a recent vintage (i.e., less than ten years old). The data used for primary data are based on direct information sources of the manufacturer. Secondary data sets were used for raw materials extraction and processing, end of life, transportation, and energy production flows. Wherever secondary data are used, the study adopts critically reviewed data for consistency, precision, and reproducibility to limit uncertainty. #### Comparability and Benchmarking A comparison or an evaluation of EPD data is only possible if all data sets to be compared were created according to EN15804 and the building context, respectively the product-specific characteristics of performance, are taken into account. Environmental declarations from different programs may not be comparable. Full conformance with the Product Category Rule: Glass Products Used In Automotive and Transport Industry: UN CPC 37113, 37115, 37116 allows EPD comparability only when all stages of the product's life cycle have been considered. However, variations and deviations are possible. #### **Estimates and Assumptions** Due to limitations in data availability, assumptions were made in allocating important manufacturing inputs and outputs including process materials, natural gas, and facility emissions. The allocation approaches taken may therefore overestimate the environmental burden for solar management glass production. Additionally, the "average" glass pane used in modeling is a calculated average and does not represent a specific product manufactured by Guardian Glass. #### **Units** The LCA results within this EPD are reported in the International System (SI) units. Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass Asia-Pacific Flat Glass Products According to ISO 14025 and EN15804 # Additional Environmental Information #### **Background Data** For life cycle modeling of the considered products, the LCA for Experts for Life Cycle Engineering, developed by Sphera, is used. The LCA for Experts-database contains consistent and documented datasets which are documented in the online LCA for Experts- documentation. To ensure comparability of results in the LCA, the basic data of the LCA for Experts database were used for energy, transportation and auxiliary materials. #### Manufacturing Figure 1 – Automotive Glass Production Flat glass production involves heating the raw materials to a liquid state and then floating the subsequent ribbon of glass atop a bath of molten tin. Once the ribbon has sufficiently cooled, it is transferred onto rollers and annealed to limit residual stresses, its edges are trimmed and the ribbon is cut to the desired sizes. The finished flat glass products are stored for additional processing (e.g., heat-treating or coating) or directly packaged and shipped to customers for further processing. Automotive glass is created in the same way as flat glass but the product recipe is slightly different compared to the base flat glass. #### **Product Installation** Guardian Glass products should be processed and installed according to best industry standards and according to all applicable building codes in the given jurisdiction. Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass According to ISO 14025 and EN15804 # Distribution, Product Use, and End of Life Asia-Pacific Flat Glass Products Upon leaving Guardian Glass facilities, flat glass can be further processed through a nationwide network of independent fabricators or Guardian's own fabrication facilities. Racks used for distribution of glass are reused many times both in the manufacturing plant and shipped to the customer and returned to Guardian Glass plants. Glass should be installed according to industry standards and according to all applicable building codes in the given jurisdiction. Installed glass should be washed frequently to remove surface dirt and to protect the glass from staining. Glass staining occurs when the sodium within the glass reacts with moisture in the air. Sodium, when combined with small amounts of water, can create sodium hydroxide which is corrosive to glass. Once installed, Guardian Glass products do not consume energy or require maintenance beyond general cleaning to fulfill their estimated service life. At the end of life, flat glass is typically landfilled or reclaimed and recycled. # **Automotive Glass Weighted Average Results per Declared Unit** Results shown below were calculated using CML 2001-April 2013 impact assessment methodology. CML 2001 is a methodology used globally for life cycle impact assessments. Table 4 - Life Cycle Impact Assessment Results per Kilogram of Automotive Glass Weighted Average | CML | | | | | | | | | | |-----------------------|--|--|----------|----------|----------|----------|----------|----------|----------| | | Parameter | Unit | A1-A3 | A4 | C1 | C2 | C3 | C4 | Total | | GWP | Global warming potential | kg CO ₂ -Eq. | 1.02E+00 | 2.16E-01 | 0.00E+00 | 1.11E-03 | 0.00E+00 | 2.54E-04 | 1.23E+00 | | ODP | Depletion potential of ODP the stratospheric ozone layer | | 5.03E-11 | 1.90E-12 | 0.00E+00 | 4.18E-14 | 0.00E+00 | 7.32E-16 | 5.22E-11 | | AP Air | Acidification potential for air emissions | kg SO ₂ -Eq. | 2.50E-03 | 2.49E-03 | 0.00E+00 | 5.46E-06 | 0.00E+00 | 1.25E-06 | 4.99E-03 | | EP | Eutrophication potential | kg(PO ₄) ₃ -
Eq. | 3.96E-04 | 4.85E-04 | 0.00E+00 | 9.73E-07 | 0.00E+00 | 1.35E-07 | 8.82E-04 | | POCP | Formation potential of tropospheric ozone photochemical oxidants | kg C ₂ H ₄ -
Eq. | 1.99E-04 | 1.88E-04 | 0.00E+00 | 6.38E-07 | 0.00E+00 | 9.85E-08 | 3.89E-04 | | ADP - elements | Abiotic depletion potential for non-fossil resources | kg Sb-Eq. | 3.03E-06 | 3.89E-09 | 0.00E+00 | 4.60E-13 | 0.00E+00 | 8.31E-11 | 3.04E-06 | | ADP - fossil
fuels | Abiotic depletion potential for fossil resources | MJ | 1.22E+01 | 2.59E+00 | 0.00E+00 | 1.41E-02 | 0.00E+00 | 3.80E-03 | 1.48E+01 | Results shown below were calculated using EN15804+A2 impact assessment methodology. Table 5 - EN15804+A2 Life Cycle Impact Assessment Results per Kilogram of Automotive Glass Weighted Average | EN15804+A2 | EN15804+A2 | | | | | | | | | |------------------------|---------------------------------|-----------------------|----------|----------|----------|----------|----------|-----------|----------| | Parameter | | Unit | A1-A3 | A4 | C1 | C2 | C3 | C4 | Total | | | Total | kg CO ₂ eq | 1.04E+00 | 2.21E-01 | 0.00E+00 | 9.49E-05 | 0.00E+00 | 2.22E-05 | 1.26E+00 | | Global | Fossil | kg CO2 eq | 1.04E+00 | 2.21E-01 | 0.00E+00 | 9.49E-05 | 0.00E+00 | 2.23E-05 | 1.26E+00 | | Warming | Biogenic | kg CO ₂ eq | 3.01E-03 | 1.82E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | -4.60E-08 | 3.19E-03 | | Potential [†] | Land Use and
Land Use Change | kg CO ₂ eq | 7.58E-04 | 5.49E-06 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.00E-08 | 7.63E-04 | | Ozone depletion | | kg CFC-11
eq | 4.89E-04 | 1.31E-12 | 0.00E+00 | 2.41E-15 | 0.00E+00 | 5.20E-17 | 4.89E-04 | Environment Asia-Pacific Flat Glass Products Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass According to ISO 14025 and EN15804 | Acidification | | Mole of H+
eq | 2.69E-03 | 3.43E-03 | 0.00E+00 | 6.17E-07 | 0.00E+00 | 1.29E-07 | 6.13E-03 | |-------------------------------|------------------------|--------------------|----------|----------|----------|----------|----------|----------|----------| | | Freshwater | kg N eq | 2.02E-04 | 5.87E-08 | 0.00E+00 | 2.65E-11 | 0.00E+00 | 3.91E-11 | 2.02E-04 | | Eutrophication | Marine | kg P eq | 3.12E-03 | 1.44E-03 | 0.00E+00 | 2.37E-07 | 0.00E+00 | 3.20E-08 | 4.56E-03 | | Latrophication | Terrestrial | Mole of N
eq | 1.07E-02 | 1.58E-02 | 0.00E+00 | 2.59E-06 | 0.00E+00 | 3.51E-07 | 2.65E-02 | | Photochemical ozone formation | | kg NMVOC
eq | 3.59E-01 | 3.97E-03 | 0.00E+00 | 6.99E-07 | 0.00E+00 | 9.84E-08 | 3.63E-01 | | Resource Use | Minerals and
Metals | kg Sb eq | 2.92E-08 | 3.64E-09 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 2.19E-12 | 3.28E-08 | | | Fossils | MJ | 1.19E+01 | 2.60E+00 | 0.00E+00 | 1.19E-03 | 0.00E+00 | 3.28E-04 | 1.45E+01 | | Water use | | m³ world
equiv. | 4.35E-02 | 3.02E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.18E-06 | 4.38E-02 | ^{*}Modules and life cycle stages not displayed above are assumed to have an impact of 0. Results below contain the resource use throughout the life cycle of the product. Table 6 - Resource Use per Kilogram of Automotive Glass Weighted Average | Table 5 Recourse dee per ranggram of Automotive Class Worginsa Average | | | | | | | |--|--|-------------|----------|----------|----------|----------| | | Parameter | Unit | A1-A3 | A4 | C1-C4 | Total | | | Renewable Primary E | nergy Resou | irces | | | | | RPRE | Renewable primary energy as energy carrier | MJ | 1.13E-01 | 5.30E-03 | 1.57E+00 | 1.69E+00 | | RPR_M | Renewable primary energy resources as material utilization | MJ | 9.74E+01 | 0.00E+00 | 0.00E+00 | 9.74E+01 | | | Nonrenewable Primary | Energy Reso | ources | | | | | NRPRE | Nonrenewable primary energy as energy carrier | MJ | 3.12E+00 | 1.38E+00 | 2.07E-03 | 4.51E+00 | | $NRPR_M$ | Nonrenewable primary energy as material utilization | MJ | 9.36E+00 | 0.00E+00 | 0.00E+00 | 9.36E+00 | | | Secondary Re | sources | | | | | | SM | Use of secondary material | kg | 2.26E-01 | 0.00E+00 | 0.00E+00 | 2.26E-01 | | RSF | Use of renewable secondary fuels | MJ | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | NRSF | Use of nonrenewable secondary fuels | MJ | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | RE | Energy recovered from disposed waste | MJ | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | Results below contain the output flows and wastes throughout the life cycle of the product. Table 7 - Waste and Outflows per Kilogram of Automotive Glass Weighted Average | Parameter | Unit | Mate | rials | Production | Total | |--|------|----------|----------|------------|----------| | | | A1-A3 | A4 | C1-C4 | Total | | Hazardous waste disposed | kg | 1.29E-10 | 3.32E-11 | 1.52E-03 | 1.52E-03 | | Non-hazardous waste disposed | kg | 6.28E-04 | 1.02E-04 | 1.11E-04 | 8.41E-04 | | High-level radioactive waste disposed | kg | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | Intermediate- and low-level radioactive waste disposed | kg | 1.04E-06 | 1.23E-06 | 7.49E-10 | 2.27E-06 | | Components for re-use | kg | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | Materials for recycling | kg | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | Materials for energy recovery | kg | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | Recovered energy exported from product system | MJ | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | [†] According to EN15804+A2 and EN17074, this impact category is also known as "climate change" Asia-Pacific Flat Glass Products Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass **According to ISO 14025 and** EN15804 # **Automotive Glass Weighted Average LCA Interpretation - CML** Cradle-to-Gate (A1-A3) for Automotive Glass drives the impacts across most impact categories except eutrophication. The Automotive Glass distribution transportation (A4) drives eutrophication. Figure 2 - Relative Contributions of Cradle to Gate with Options Life Cycle Stages for Automotive Glass Glass can come in a variety of different sizes, but its impacts can be scaled to different glass thicknesses. For this EPD, results are reported per kilogram of glass produced. To convert to area (a square meter) at a given thickness, please see the scaling factor below for different sizes. Divide the results in Tables 14 – 17 above by the scaling factor below. #### **Equation 1. Scaling Results to an Area at an Assumed Thickness** Impact Assessment Result per $m^2 = Impact Quantity$ (in Tables above) \div Scaling Factor at Desired Thickness # Example 1. Results to an Area at 1.6 mm Thickness $0.308 \ kg \ CO_2 \ per \ m^2 = 1.23 \ kg \ CO_2 \div 0.0400$ Table 8 - Scaling Factors Used to Divide the Kilogram Results to Equate to Various Thicknesses | Thickness | Scaling Factor | |-----------|----------------| | 1.6 mm | 0.0400 | | 1.8 mm | 0.0450 | | 2.1 mm | 0.0525 | | 2.5 mm | 0.0625 | | 3.2 mm | 0.0800 | | 3.5 mm | 0.0875 | | 4 mm | 0.1000 | Environment Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass Asia-Pacific Flat Glass Products According to ISO 14025 and EN15804 # Additional Environmental Information # **Environmental and Health During Manufacturing** At Guardian Glass, our vision is to help people improve their lives by providing the products and services they value more highly than their alternatives. We do this responsibly, while consuming fewer resources, seeking mutually beneficial outcomes with customers, employees, suppliers, communities, and other key constituencies. Our stewardship framework flows directly from this vision, describing our commitment and priorities around Environmental, Social and Governance (ESG) topics. Stewardship broadly encompasses the responsible management of our actions and the resources entrusted to our care in a manner that respects the rights of others. Guardian has invested in socially responsible policies and practices to help our businesses embed stewardship into the company culture and business decisions. Through responsible practices in the areas of environmental management and health and safety, Guardian's goal is to reduce potential environmental impacts to the communities in which it operates and create an exceptional workplace for its employees. The safety and well-being of our employees and communities is our first priority. We build capability through our employees and resilience in our systems to prevent serious outcomes when the unexpected happens. We promote a principle-based, bottom-up approach to safety, involving front-line employees and supervisors in the identification of hazards and implementation of solutions all around the world. Each person is expected to raise concerns and share ideas about opportunities for improvement. Each manufacturing site has completed a risk evaluation that identified priorities with a focus on critical hazards. Action plans are developed, and knowledge networks are leveraged across the organization to better manage risk in those areas. We pride ourselves on being solution providers, especially in the context of environmental stewardship, which involves considering each stage of the life cycle – from the sourcing of raw materials for each product, through to its production, application and end-of-life. Our approach to environmental stewardship is twofold – we strive to discover new and innovative technologies that improve both the environmental performance and effectiveness of our manufacturing processes and of our products. We're committed to improving the energy efficiency of our manufacturing processes and reducing our use of resources. One way to achieve these is to maximize the amount of glass cullet (broken or old glass) used. Wider use of cullet in the glass manufacturing process helps to reduce consumption of virgin raw materials, save energy and reduce emissions. In line with our environmental stewardship priorities, Guardian Glass has started various initiatives aiming to use more cullet in glass manufacturing instead of virgin raw materials. The ratio of cullet in batch and glass can vary from site to site and over time, depending on cullet availability. # **Extraordinary Effects** This product does not meet the criteria for classification in any hazard class according to according to OSHA 29 CFR 1910.1200. Please refer to our other product declarations and certifications - e.g., voluntary safety data sheet (SDS) or health product declaration (HPD) - for additional composition information on our products. There are no known negative effects from the use of this product during fire, water, or mechanical destruction. # **Delayed Emissions** Global warming potential is calculated using the CML 4.1 impact assessment methodologies. Delayed emissions are not considered. Guardian Glass: Float Glass Clear, Float Glass Light Green, and Solar Management Glass According to ISO 14025 and EN15804 #### **Environmental Activities and Certifications** In an effort to provide greater support to the architects and designers who strive to meet increasingly stringent regulations, codes and standards and achieve ratings within various "green" building rating systems such as LEED and BREEAM, Guardian Glass provides product and regionally specific documents and certifications to communicate transparent information about the life-cycle environmental impact of many of our products. More information on Guardian Glass's product certifications and declarations is available at www.quardianglass.com # **Contact Information** Asia-Pacific Flat Glass Products ### **Study Commissioner and Further Information** Guardian Glass Global Headquarters 2300 Harmon Road Auburn Hills, MI 48306 (+1) 248 340-1800 info@guardianglass.com www.guardianglass.com #### **LCA Practitioner** Sustainable Solutions Corporation 155 Railroad Plaza, Suite 203 Royersford, PA 19468 USA (+1) 610 569-1047 info@sustainablesolutionscorporation.com www.sustainablesolutionscorporation.com Guardian Glass: Float Glass Clear, Float Glass GUARD GLASS Light Green, and Solar Management Glass **According to ISO 14025 and** EN15804 # Asia-Pacific Flat Glass Products # References | | PCR | Glass Products Used In Automotive and Transport Industry: UN CPC 37113, 37115, 37116. V1. Issued May 2023. | |---|--|--| | | LCA for Experts | Sphera. LCA for Experts Life Cycle Assessment version 10.6 (software). | | , | ISO 14025 | ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures. | | | ISO 14040 | ISO 14040:2009-11, Environmental management — Life cycle assessment — Principles and framework. | | | ISO 14044 | ISO 14044:2006-10, Environmental management — Life cycle assessment — Requirements and guidelines. | | | EN 15804 | EN 15804:2012+A2:2019/AC 2021, Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. | | | ULE | UL Environment, General Program Instructions, v2.7, March 2022. | | • | Characterization
Method | IPPC. 2014. Climate Change 2013. The Physical Science Basis. Cambridge University Press. (http://www.ipcc.ch/report/ar5/wg1/). | | • | Characterization
Method | Hauschild M.Z., & Wenzel H. Environmental Assessment of Products. Springer, US, Vol. 2, 1998. | | • | Characterization
Method | Heijungs R., Guinée J.B., Huppes G., Lankreijer R.M., Udo de Haes H.A., Wegener Sleeswijk A. Environmental Life Cycle Assessment of Products: Guide and Backgrounds. CML. Leiden University, Leiden, 1992. | | • | Characterization
Method | Jenkin M.E., & Hayman G.D. Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters. Atmospheric Environment. 1999, 33 (8) pp. 1275-1293. | | | Characterization
Method
Characterization
Method | WMO. 1999. Scientific Assessment of Ozone Depletion: 1998, World Meteorological Organization Global Ozone Research and Monitoring Project - Report No. 44, WMO, Geneva. Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources using Environmental Chambers- version 1.2, January 2017. |